Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PID Control of Biochemical Reaction Networks (1903.10390v1)

Published 25 Mar 2019 in cs.SY

Abstract: Principles of feedback control have been shown to naturally arise in biological systems and successfully applied to build synthetic circuits. In this work we consider Biochemical Reaction Networks (CRNs) as a paradigm for modelling biochemical systems and provide the first implementation of a derivative component in CRNs. That is, given an input signal represented by the concentration level of some species, we build a CRN that produces as output the concentration of two species whose difference is the derivative of the input signal. By relying on this component, we present a CRN implementation of a feedback control loop with Proportional-Integral-Derivative (PID) controller and apply the resulting control architecture to regulate the protein expression in a microRNA regulated gene expression model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.