Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimality-preserving Reduction of Chemical Reaction Networks (2301.08553v1)

Published 20 Jan 2023 in eess.SY and cs.SY

Abstract: Across many disciplines, chemical reaction networks (CRNs) are an established population model defined as a system of coupled nonlinear ordinary differential equations. In many applications, for example, in systems biology and epidemiology, CRN parameters such as the kinetic reaction rates can be used as control inputs to steer the system toward a given target. Unfortunately, the resulting optimal control problem is nonlinear, therefore, computationally very challenging. We address this issue by introducing an optimality-preserving reduction algorithm for CRNs. The algorithm partitions the original state variables into a reduced set of macro-variables for which one can define a reduced optimal control problem from which one can exactly recover the solution of the original control problem. Notably, the reduction algorithm runs with polynomial time complexity in the size of the CRN. We use this result to reduce reachability and control problems of large-scale protein-interaction networks and vaccination models with hundreds of thousands of state variables.

Summary

We haven't generated a summary for this paper yet.