Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reactmine: a statistical search algorithm for inferring chemical reactions from time series data (2209.03185v2)

Published 7 Sep 2022 in q-bio.QM and stat.ML

Abstract: Inferring chemical reaction networks (CRN) from concentration time series is a challenge encouragedby the growing availability of quantitative temporal data at the cellular level. This motivates thedesign of algorithms to infer the preponderant reactions between the molecular species observed ina given biochemical process, and build CRN structure and kinetics models. Existing ODE-basedinference methods such as SINDy resort to least square regression combined with sparsity-enforcingpenalization, such as Lasso. However, we observe that these methods fail to learn sparse modelswhen the input time series are only available in wild type conditions, i.e. without the possibility toplay with combinations of zeroes in the initial conditions. We present a CRN inference algorithmwhich enforces sparsity by inferring reactions in a sequential fashion within a search tree of boundeddepth, ranking the inferred reaction candidates according to the variance of their kinetics on theirsupporting transitions, and re-optimizing the kinetic parameters of the CRN candidates on the wholetrace in a final pass. We show that Reactmine succeeds both on simulation data by retrievinghidden CRNs where SINDy fails, and on two real datasets, one of fluorescence videomicroscopyof cell cycle and circadian clock markers, the other one of biomedical measurements of systemiccircadian biomarkers possibly acting on clock gene expression in peripheral organs, by inferringpreponderant regulations in agreement with previous model-based analyses. The code is available athttps://gitlab.inria.fr/julmarti/crninf/ together with introductory notebooks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.