Papers
Topics
Authors
Recent
2000 character limit reached

A data-driven approach to precipitation parameterizations using convolutional encoder-decoder neural networks (1903.10274v1)

Published 25 Mar 2019 in physics.ao-ph

Abstract: Numerical Weather Prediction (NWP) models represent sub-grid processes using parameterizations, which are often complex and a major source of uncertainty in weather forecasting. In this work, we devise a simple ML methodology to learn parameterizations from basic NWP fields. Specifically, we demonstrate how encoder-decoder Convolutional Neural Networks (CNN) can be used to derive total precipitation using geopotential height as the only input. Several popular neural network architectures, from the field of image processing, are considered and a comparison with baseline ML methodologies is provided. We use NWP reanalysis data to train different ML models showing how encoder-decoder CNNs are able to interpret the spatial information contained in the geopotential field to infer total precipitation with a high degree of accuracy. We also provide a method to identify the levels of the geopotential height that have a higher influence on precipitation through a variable selection process. As far as we know, this paper covers the first attempt to model NWP parameterizations using CNN methodologies.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com