Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A non-intrusive reduced-order modeling method using polynomial chaos expansion (1903.10202v2)

Published 25 Mar 2019 in physics.comp-ph

Abstract: We propose a non-intrusive reduced-order modeling method based on proper orthogonal decomposition (POD) and polynomial chaos expansion (PCE) for stochastic representations in uncertainty quantification (UQ) analysis. Firstly, POD provides an optimally ordered basis from a set of selected full-order snapshots. Truncating this optimal basis, we construct a reduced-order model with undetermined coefficients. Then, PCE is utilized to approximate the coefficients of the truncated basis. In the proposed method, we construct a PCE using a non-intrusive regression-based method. Combined with the model reduction ability of POD, the proposed method efficiently provides stochastic representations in UQ analysis. To investigate the performance of the proposed method, we provide three numerical examples, i.e., a highly nonlinear analytical function with three uncertain parameters, two-dimensional (2D) heat-driven cavity flow with a stochastic boundary temperature, and 2D heat diffusion with stochastic conductivity. The results demonstrate that the proposed method significantly reduces the computational costs and storage requirements that arise due to high-dimensional physical and random spaces. While demonstrating a similar accuracy with that of the classical full-PCE in predicting statistical quantities. Furthermore, the proposed method reasonably predict the outputs of the full order model using only a few snapshots.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube