Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dirichlet-to-Neumann maps on Trees (1903.09526v2)

Published 22 Mar 2019 in math.AP and math.CA

Abstract: In this paper we study the Dirichlet-to-Neumann map for solutions to mean value formulas on trees. We give two alternative definition of the Dirichlet-to-Neumann map. For the first definition (that involves the product of a "gradient" with a "normal vector" and for a linear mean value formula on the directed tree (taking into account only the successors of a given node) we obtain that the Dirichlet-to-Neumann map is given by $g\mapsto cg'$ (here $c$ is an explicit constant). Notice that this is a local operator of order one. We also consider linear undirected mean value formulas (taking into account not only the successors but the ancestor and the successors of a given node) and prove a similar result. For this kind of mean value formula we include some existence and uniqueness results for the associated Dirichlet problem. Finally, we give an alternative definition of the Dirichlet-to-Neumann map (taking into account differences along a given branch of the tree). With this alternative definition, for a certain range of parameters, we obtain that the Dirichlet-to-Neumann map is given by a nonlocal operator (as happens for the classical Laplacian in the Euclidean space).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.