Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 61 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Uniqueness in the Calderón problem and bilinear restriction estimates (1903.09382v3)

Published 22 Mar 2019 in math.AP and math.CA

Abstract: Uniqueness in the Calder\'on problem in dimension bigger than two was usually studied under the assumption that conductivity has bounded gradient. For conductivities with unbounded gradients uniqueness results have not been known until recent years. The latest result due to Haberman basically relies on the optimal $L2$ restriction estimate for hypersurface which is known as the Tomas-Stein restriction theorem. In the course of developments of the Fourier restriction problem bilinear and multilinear generalizations of the (adjoint) restriction estimates under suitable transversality condition between surfaces have played important roles. Since such advanced machineries usually provide strengthened estimates, it seems natural to attempt to utilize these estimates to improve the known results. In this paper, we make use of the sharp bilinear restriction estimates, which is due to Tao, and relax the regularity assumption on conductivity. We also consider the inverse problem for the Schr\"odinger operator with potentials contained in the Sobolev spaces of negative orders.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.