Papers
Topics
Authors
Recent
Search
2000 character limit reached

Statistical Privacy in Distributed Average Consensus on Bounded Real Inputs

Published 20 Mar 2019 in cs.CR, cs.IT, cs.SY, and math.IT | (1903.09315v1)

Abstract: This paper proposes a privacy protocol for distributed average consensus algorithms on bounded real-valued inputs that guarantees statistical privacy of honest agents' inputs against colluding (passive adversarial) agents, if the set of colluding agents is not a vertex cut in the underlying communication network. This implies that privacy of agents' inputs is preserved against $t$ number of arbitrary colluding agents if the connectivity of the communication network is at least $(t+1)$. A similar privacy protocol has been proposed for the case of bounded integral inputs in our previous paper~\cite{gupta2018information}. However, many applications of distributed consensus concerning distributed control or state estimation deal with real-valued inputs. Thus, in this paper we propose an extension of the privacy protocol in~\cite{gupta2018information}, for bounded real-valued agents' inputs, where bounds are known apriori to all the agents.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.