Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Realization of a quantum autoencoder for lossless compression of quantum data (1903.08699v3)

Published 20 Mar 2019 in quant-ph

Abstract: As a ubiquitous aspect of modern information technology, data compression has a wide range of applications. Therefore, a quantum autoencoder which can compress quantum information into a low-dimensional space is fundamentally important to achieve automatic data compression in the field of quantum information. Such a quantum autoencoder can be implemented through training the parameters of a quantum device using classical optimization algorithms. In this article, we analyze the condition of achieving a perfect quantum autoencoder and theoretically prove that a quantum autoencoder can losslessly compress high-dimensional quantum information into a low-dimensional space (also called latent space) if the number of maximum linearly independent vectors from input states is no more than the dimension of the latent space. Also, we experimentally realize a universal two-qubit unitary gate and design a quantum autoencoder device by applying machine learning method. Experimental results demonstrate that our quantum autoencoder is able to compress two two-qubit states into two one-qubit states. Besides compressing quantum information, the quantum autoencoder is used to experimentally discriminate two groups of nonorthogonal states.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: