Papers
Topics
Authors
Recent
2000 character limit reached

Maximal subgroups and von Neumann subalgebras with the Haagerup property

Published 19 Mar 2019 in math.OA, math.DS, and math.GR | (1903.08190v5)

Abstract: We initiate a study of maximal subgroups and maximal von Neumann subalgebras which have the Haagerup property. We determine maximal Haagerup subgroups inside $\mathbb{Z}2 \rtimes SL_2(\mathbb{Z})$ and obtain several explicit instances where maximal Haagerup subgroups yield maximal Haagerup subalgebras. Our techniques are on one hand based on group-theoretic considerations, and on the other on certain results on intermediate von Neumann algebras, in particular these allowing us to deduce that all the intermediate algebras for certain inclusions arise from groups or from group actions. Some remarks and examples concerning maximal non-(T) subgroups and subalgebras are also presented, and we answer two questions of Ge regarding maximal von Neumann subalgebras.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.