Varieties of Data Languages
Abstract: We establish an Eilenberg-type correspondence for data languages, i.e. languages over an infinite alphabet. More precisely, we prove that there is a bijective correspondence between varieties of languages recognized by orbit-finite nominal monoids and pseudovarieties of such monoids. This is the first result of this kind for data languages. Our approach makes use of nominal Stone duality and a recent category theoretic generalization of Birkhoff-type HSP theorems that we instantiate here for the category of nominal sets. In addition, we prove an axiomatic characterization of weak pseudovarieties as those classes of orbit-finite monoids that can be specified by sequences of nominal equations, which provides a nominal version of a classical theorem of Eilenberg and Sch\"utzenberger.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.