Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Solving Splitted Multi-Commodity Flow Problem by Efficient Linear Programming Algorithm (1903.07469v1)

Published 18 Mar 2019 in math.OC

Abstract: Column generation is often used to solve multi-commodity flow problems. A program for column generation always includes a module that solves a linear equation. In this paper, we address three major issues in solving linear problem during column generation procedure which are (1) how to employ the sparse property of the coefficient matrix; (2) how to reduce the size of the coefficient matrix; and (3) how to reuse the solution to a similar equation. To this end, we first analyze the sparse property of coefficient matrix of linear equations and find that the matrices occurring in iteration are very sparse. Then, we present an algorithm locSolver (for localized system solver) for linear equations with sparse coefficient matrices and right-hand-sides. This algorithm can reduce the number of variables. After that, we present the algorithm incSolver (for incremental system solver) which utilizes similarity in the iterations of the program for a linear equation system. All three techniques can be used in column generation of multi-commodity problems. Preliminary numerical experiments show that the incSolver is significantly faster than the existing algorithms. For example, random test cases show that incSolver is at least 37 times and up to 341 times faster than popular solver LAPACK.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube