Papers
Topics
Authors
Recent
2000 character limit reached

Natural Language Interaction with Explainable AI Models (1903.05720v2)

Published 13 Mar 2019 in cs.AI

Abstract: This paper presents an explainable AI (XAI) system that provides explanations for its predictions. The system consists of two key components -- namely, the prediction And-Or graph (AOG) model for recognizing and localizing concepts of interest in input data, and the XAI model for providing explanations to the user about the AOG's predictions. In this work, we focus on the XAI model specified to interact with the user in natural language, whereas the AOG's predictions are considered given and represented by the corresponding parse graphs (pg's) of the AOG. Our XAI model takes pg's as input and provides answers to the user's questions using the following types of reasoning: direct evidence (e.g., detection scores), part-based inference (e.g., detected parts provide evidence for the concept asked), and other evidences from spatio-temporal context (e.g., constraints from the spatio-temporal surround). We identify several correlations between user's questions and the XAI answers using Youtube Action dataset.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.