Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Scattering Amplitude Recursion Relations in BV Quantisable Theories (1903.05713v3)

Published 13 Mar 2019 in hep-th, math-ph, and math.MP

Abstract: Tree-level scattering amplitudes in Yang-Mills theory satisfy a recursion relation due to Berends and Giele which yields e.g. the famous Parke-Taylor formula for MHV amplitudes. We show that the origin of this recursion relation becomes clear in the BV formalism, which encodes a field theory in an $L_\infty$-algebra. The recursion relation is obtained in the transition to a smallest representative in the quasi-isomorphism class of that $L_\infty$-algebra, known as a minimal model. In fact, the quasi-isomorphism contains all the information about the scattering theory. As we explain, the computation of such a minimal model is readily performed in any BV quantisable theory, which, in turn, produces recursion relations for its tree-level scattering amplitudes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.