Simultaneous Confidence Band for Stationary Covariance Function of Dense Functional Data
Abstract: Inference via simultaneous confidence band is studied for stationary covariance function of dense functional data. A two-stage estimation procedure is proposed based on spline approximation, the first stage involving estimation of all the individual trajectories and the second stage involving estimation of the covariance function through smoothing the empirical covariance function. The proposed covariance estimator is smooth and as efficient as the oracle estimator when all individual trajectories are known. An asymptotic simultaneous confidence band (SCB) is developed for the true covariance function, and the coverage probabilities are shown to be asymptotically correct. Simulation experiments are conducted on the numerical performance of the proposed estimator and SCB. The proposed method is also illustrated by two real data examples.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.