2000 character limit reached
Accelerated Optimization With Orthogonality Constraints (1903.05204v4)
Published 12 Mar 2019 in math.OC
Abstract: We develop a generalization of Nesterov's accelerated gradient descent method which is designed to deal with orthogonality constraints. To demonstrate the effectiveness of our method, we perform numerical experiments which demonstrate that the number of iterations scales with the square root of the condition number, and also compare with existing state-of-the-art quasi-Newton methods on the Stiefel manifold. Our experiments show that our method outperforms existing state-of-the-art quasi-Newton methods on some large, ill-conditioned problems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.