Learning $\textit{Ex Nihilo}$ (1903.03515v2)
Abstract: This paper introduces, philosophically and to a degree formally, the novel concept of learning $\textit{ex nihilo}$, intended (obviously) to be analogous to the concept of creation $\textit{ex nihilo}$. Learning $\textit{ex nihilo}$ is an agent's learning "from nothing," by the suitable employment of schemata for deductive and inductive reasoning. This reasoning must be in machine-verifiable accord with a formal proof/argument theory in a $\textit{cognitive calculus}$ (i.e., roughly, an intensional higher-order multi-operator quantified logic), and this reasoning is applied to percepts received by the agent, in the context of both some prior knowledge, and some prior and current interests. Learning $\textit{ex nihilo}$ is a challenge to contemporary forms of ML, indeed a severe one, but the challenge is offered in the spirt of seeking to stimulate attempts, on the part of non-logicist ML researchers and engineers, to collaborate with those in possession of learning-$\textit{ex nihilo}$ frameworks, and eventually attempts to integrate directly with such frameworks at the implementation level. Such integration will require, among other things, the symbiotic interoperation of state-of-the-art automated reasoners and high-expressivity planners, with statistical/connectionist ML technology.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.