Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Construction: implications to cybersecurity (1906.10019v4)

Published 24 Jun 2019 in cs.LG and stat.ML

Abstract: Statistical learning is the process of estimating an unknown probabilistic input-output relationship of a system using a limited number of observations. A statistical learning machine (SLM) is the algorithm, function, model, or rule, that learns such a process; and ML is the conventional name of this field. ML and its applications are ubiquitous in the modern world. Systems such as Automatic target recognition (ATR) in military applications, computer aided diagnosis (CAD) in medical imaging, DNA microarrays in genomics, optical character recognition (OCR), speech recognition (SR), spam email filtering, stock market prediction, etc., are few examples and applications for ML; diverse fields but one theory. In particular, ML has gained a lot of attention in the field of cyberphysical security, especially in the last decade. It is of great importance to this field to design detection algorithms that have the capability of learning from security data to be able to hunt threats, achieve better monitoring, master the complexity of the threat intelligence feeds, and achieve timely remediation of security incidents. The field of ML can be decomposed into two basic subfields: \textit{construction} and \textit{assessment}. We mean by \textit{construction} designing or inventing an appropriate algorithm that learns from the input data and achieves a good performance according to some optimality criterion. We mean by \textit{assessment} attributing some performance measures to the constructed ML algorithm, along with their estimators, to objectively assess this algorithm. \textit{Construction} and \textit{assessment} of a ML algorithm require familiarity with different other fields: probability, statistics, matrix theory, optimization, algorithms, and programming, among others.f

Summary

We haven't generated a summary for this paper yet.