Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Regression models for compositional data: General log-contrast formulations, proximal optimization, and microbiome data applications (1903.01050v1)

Published 4 Mar 2019 in math.ST and stat.TH

Abstract: Compositional data sets are ubiquitous in science, including geology, ecology, and microbiology. In microbiome research, compositional data primarily arise from high-throughput sequence-based profiling experiments. These data comprise microbial compositions in their natural habitat and are often paired with covariate measurements that characterize physicochemical habitat properties or the physiology of the host. Inferring parsimonious statistical associations between microbial compositions and habitat- or host-specific covariate data is an important step in exploratory data analysis. A standard statistical model linking compositional covariates to continuous outcomes is the linear log-contrast model. This model describes the response as a linear combination of log-ratios of the original compositions and has been extended to the high-dimensional setting via regularization. In this contribution, we propose a general convex optimization model for linear log-contrast regression which includes many previous proposals as special cases. We introduce a proximal algorithm that solves the resulting constrained optimization problem exactly with rigorous convergence guarantees. We illustrate the versatility of our approach by investigating the performance of several model instances on soil and gut microbiome data analysis tasks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.