Papers
Topics
Authors
Recent
2000 character limit reached

Answer Them All! Toward Universal Visual Question Answering Models

Published 1 Mar 2019 in cs.CV | (1903.00366v2)

Abstract: Visual Question Answering (VQA) research is split into two camps: the first focuses on VQA datasets that require natural image understanding and the second focuses on synthetic datasets that test reasoning. A good VQA algorithm should be capable of both, but only a few VQA algorithms are tested in this manner. We compare five state-of-the-art VQA algorithms across eight VQA datasets covering both domains. To make the comparison fair, all of the models are standardized as much as possible, e.g., they use the same visual features, answer vocabularies, etc. We find that methods do not generalize across the two domains. To address this problem, we propose a new VQA algorithm that rivals or exceeds the state-of-the-art for both domains.

Citations (81)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.