Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Polynomial bound for the partition rank vs the analytic rank of tensors (1902.11207v3)

Published 26 Feb 2019 in math.CO and math.NT

Abstract: A tensor defined over a finite field $\mathbb{F}$ has low analytic rank if the distribution of its values differs significantly from the uniform distribution. An order $d$ tensor has partition rank 1 if it can be written as a product of two tensors of order less than $d$, and it has partition rank at most $k$ if it can be written as a sum of $k$ tensors of partition rank 1. In this paper, we prove that if the analytic rank of an order $d$ tensor is at most $r$, then its partition rank is at most $f(r,d,|\mathbb{F}|)$, where, for fixed $d$ and $\mathbb{F}$, $f$ is a polynomial in $r$. This is an improvement of a recent result of the author, where he obtained a tower-type bound. Prior to our work, the best known bound was an Ackermann-type function in $r$ and $d$, though it did not depend on $\mathbb{F}$. It follows from our results that a biased polynomial has low rank; there too we obtain a polynomial dependence improving the previously known Ackermann-type bound. A similar polynomial bound for the partition rank was obtained independently and simultaneously by Mili\'cevi\'c.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.