Existence and rigidity of quantum isometry groups for compact metric spaces
Abstract: We prove the existence of a quantum isometry groups for new classes of metric spaces: (i) geodesic metrics for compact connected Riemannian manifolds (possibly with boundary) and (ii) metric spaces admitting a uniformly distributed probability measure. In the former case it also follows from recent results of the second author that the quantum isometry group is classical, i.e. the commutative $C*$-algebra of continuous functions on the Riemannian isometry group.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.