Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Two-Stage Dual Dynamic Programming with Application to Nonlinear Hydro Scheduling (1902.08699v2)

Published 22 Feb 2019 in math.OC

Abstract: We present an approximate method for solving nonlinear control problems over long time horizons, in which the full nonlinear model is preserved over an initial part of the horizon, while the remainder of the horizon is modeled using a linear relaxation. As this approximate problem may still be too large to solve directly, we present a Benders decomposition-based solution algorithm that iterates between solving the nonlinear and linear parts of the horizon. This extends the Dual Dynamic Programming approach commonly employed for optimization of linearized hydro power systems. We prove that the proposed algorithm converges after a finite number of iterations, even when the nonlinear initial stage problems are solved inexactly. We also bound the suboptimality of the split-horizon method with respect to the original nonlinear problem, in terms of the properties of a map between the linear and nonlinear state-input trajectories. We then apply this method to a case study concerning a multiple reservoir hydro system, approximating the nonlinear head effects in the second stage using McCormick envelopes. We demonstrate that near-optimal solutions can be obtained in a shrinking horizon setting when the full nonlinear model is used for only a short initial section of the horizon. For this example, the approach is shown to be more practical than both conventional dynamic programming and a multi-cell McCormick envelope approximation from literature.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube