Papers
Topics
Authors
Recent
2000 character limit reached

Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems

Published 22 Feb 2019 in cs.IT, cs.CR, cs.LG, eess.SP, and math.IT | (1902.08391v1)

Abstract: We show that end-to-end learning of communication systems through deep neural network (DNN) autoencoders can be extremely vulnerable to physical adversarial attacks. Specifically, we elaborate how an attacker can craft effective physical black-box adversarial attacks. Due to the openness (broadcast nature) of the wireless channel, an adversary transmitter can increase the block-error-rate of a communication system by orders of magnitude by transmitting a well-designed perturbation signal over the channel. We reveal that the adversarial attacks are more destructive than jamming attacks. We also show that classical coding schemes are more robust than autoencoders against both adversarial and jamming attacks. The codes are available at [1].

Citations (106)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.