Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Cross Validation for Penalized Quantile Regression with a Case-Weight Adjusted Solution Path (1902.07770v2)

Published 20 Feb 2019 in stat.ME and stat.CO

Abstract: Cross validation is widely used for selecting tuning parameters in regularization methods, but it is computationally intensive in general. To lessen its computational burden, approximation schemes such as generalized approximate cross validation (GACV) are often employed. However, such approximations may not work well when non-smooth loss functions are involved. As a case in point, approximate cross validation schemes for penalized quantile regression do not work well for extreme quantiles. In this paper, we propose a new algorithm to compute the leave-one-out cross validation scores exactly for quantile regression with ridge penalty through a case-weight adjusted solution path. Resorting to the homotopy technique in optimization, we introduce a case weight for each individual data point as a continuous embedding parameter and decrease the weight gradually from one to zero to link the estimators based on the full data and those with a case deleted. This allows us to design a solution path algorithm to compute all leave-one-out estimators very efficiently from the full-data solution. We show that the case-weight adjusted solution path is piecewise linear in the weight parameter, and using the solution path, we examine case influences comprehensively and observe that different modes of case influences emerge, depending on the specified quantiles, data dimensions and penalty parameter. We further illustrate the utility of the proposed algorithm in real-world applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.