Papers
Topics
Authors
Recent
2000 character limit reached

Gaussian Process Priors for Dynamic Paired Comparison Modelling (1902.07378v1)

Published 20 Feb 2019 in stat.AP, cs.LG, and stat.ML

Abstract: Dynamic paired comparison models, such as Elo and Glicko, are frequently used for sports prediction and ranking players or teams. We present an alternative dynamic paired comparison model which uses a Gaussian Process (GP) as a prior for the time dynamics rather than the Markovian dynamics usually assumed. In addition, we show that the GP model can easily incorporate covariates. We derive an efficient approximate Bayesian inference procedure based on the Laplace Approximation and sparse linear algebra. We select hyperparameters by maximising their marginal likelihood using Bayesian Optimisation, comparing the results against random search. Finally, we fit and evaluate the model on the 2018 season of ATP tennis matches, where it performs competitively, outperforming Elo and Glicko on log loss, particularly when surface covariates are included.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.