Matroid connectivity and singularities of configuration hypersurfaces (1902.06507v4)
Abstract: Consider a linear realization of a matroid over a field. One associates with it a configuration polynomial and a symmetric bilinear form with linear homogeneous coefficients. The corresponding configuration hypersurface and its non-smooth locus support the respective first and second degeneracy scheme of the bilinear form. We show that these schemes are reduced and describe the effect of matroid connectivity: for (2-)connected matroids, the configuration hypersurface is integral, and the second degeneracy scheme is reduced Cohen-Macaulay of codimension 3. If the matroid is 3-connected, then also the second degeneracy scheme is integral. In the process, we describe the behavior of configuration polynomials, forms and schemes with respect to various matroid constructions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.