Existence of Weak Solutions for $p(.)$-Laplacian Equation via Compact Embeddings of the Double Weighted Variable Exponent Sobolev Spaces (1902.04822v1)
Abstract: In this study, we define double weighted variable exponent Sobolev spaces $W{1,q(.),p(.)}\left( \Omega ,\vartheta _{0},\vartheta \right) $ with respect to two different weight functions. Also, we investigate the basic properties of this spaces. Moreover, we discuss the existence of weak solutions for weighted Dirichlet problem of $p(.)$-Laplacian equation \begin{equation*} \left{ \begin{array}{cc} -\text{div}\left( \vartheta (x)\left\vert \nabla f\right\vert {p(x)-2}\nabla f\right) =\vartheta _{0}(x)\left\vert f\right\vert {q(x)-2}f & x\in \Omega \ f=0 & x\in \partial \Omega \end{array} \right. \end{equation*} under some conditions of compact embedding involving the double weighted variable exponent Sobolev spaces.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.