Papers
Topics
Authors
Recent
2000 character limit reached

Gaussian Mean Field Regularizes by Limiting Learned Information (1902.04340v1)

Published 12 Feb 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Variational inference with a factorized Gaussian posterior estimate is a widely used approach for learning parameters and hidden variables. Empirically, a regularizing effect can be observed that is poorly understood. In this work, we show how mean field inference improves generalization by limiting mutual information between learned parameters and the data through noise. We quantify a maximum capacity when the posterior variance is either fixed or learned and connect it to generalization error, even when the KL-divergence in the objective is rescaled. Our experiments demonstrate that bounding information between parameters and data effectively regularizes neural networks on both supervised and unsupervised tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.