Papers
Topics
Authors
Recent
Search
2000 character limit reached

Scalable Fair Clustering

Published 10 Feb 2019 in cs.DS and cs.LG | (1902.03519v2)

Abstract: We study the fair variant of the classic $k$-median problem introduced by Chierichetti et al. [2017]. In the standard $k$-median problem, given an input pointset $P$, the goal is to find $k$ centers $C$ and assign each input point to one of the centers in $C$ such that the average distance of points to their cluster center is minimized. In the fair variant of $k$-median, the points are colored, and the goal is to minimize the same average distance objective while ensuring that all clusters have an "approximately equal" number of points of each color. Chierichetti et al. proposed a two-phase algorithm for fair $k$-clustering. In the first step, the pointset is partitioned into subsets called fairlets that satisfy the fairness requirement and approximately preserve the $k$-median objective. In the second step, fairlets are merged into $k$ clusters by one of the existing $k$-median algorithms. The running time of this algorithm is dominated by the first step, which takes super-quadratic time. In this paper, we present a practical approximate fairlet decomposition algorithm that runs in nearly linear time. Our algorithm additionally allows for finer control over the balance of resulting clusters than the original work. We complement our theoretical bounds with empirical evaluation.

Citations (186)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.