Papers
Topics
Authors
Recent
2000 character limit reached

Embedding onto Wheel-like Networks

Published 9 Feb 2019 in math.CO | (1902.03391v1)

Abstract: One of the important features of an interconnection network is its ability to efficiently simulate programs or parallel algorithms written for other architectures. Such a simulation problem can be mathematically formulated as a graph embedding problem. In this paper we compute the lower bound for dilation and congestion of embedding onto wheel-like networks. Further, we compute the exact dilation of embedding wheel-like networks into hypertrees, proving that the lower bound obtained is sharp. Again, we compute the exact congestion of embedding windmill graphs into circulant graphs, proving that the lower bound obtained is sharp. Further, we compute the exact wirelength of embedding wheels and fans into 1,2-fault hamiltonian graphs. Using this we estimate the exact wirelength of embedding wheels and fans into circulant graphs, generalized Petersen graphs, augmented cubes, crossed cubes, M\"{o}bius cubes, twisted cubes, twisted $n$-cubes, locally twisted cubes, generalized twisted cubes, odd-dimensional cube connected cycle, hierarchical cubic networks, alternating group graphs, arrangement graphs, 3-regular planer hamiltonian graphs, star graphs, generalised matching networks, fully connected cubic networks, tori and 1-fault traceable graphs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.