Papers
Topics
Authors
Recent
Search
2000 character limit reached

Online Clustering by Penalized Weighted GMM

Published 7 Feb 2019 in cs.LG, cs.CV, and stat.ML | (1902.02544v1)

Abstract: With the dawn of the Big Data era, data sets are growing rapidly. Data is streaming from everywhere - from cameras, mobile phones, cars, and other electronic devices. Clustering streaming data is a very challenging problem. Unlike the traditional clustering algorithms where the dataset can be stored and scanned multiple times, clustering streaming data has to satisfy constraints such as limit memory size, real-time response, unknown data statistics and an unknown number of clusters. In this paper, we present a novel online clustering algorithm which can be used to cluster streaming data without knowing the number of clusters a priori. Results on both synthetic and real datasets show that the proposed algorithm produces partitions which are close to what you could get if you clustered the whole data at one time.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.