One- versus multi-component regular variation and extremes of Markov trees
Abstract: A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a list of conditional independence relations. Upon an assumption on the tails of the Markov kernels associated to these pairs, the conditional distribution of the self-normalized random vector when the variable at the root of the tree tends to infinity converges weakly to a random vector of coupled random walks called tail tree. If, in addition, the conditioning variable has a regularly varying tail, the Markov tree satisfies a form of one-component regular variation. Changing the location of the root, that is, changing the conditioning variable, yields a different tail tree. When the tails of the marginal distributions of the conditioning variables are balanced, these tail trees are connected by a formula that generalizes the time change formula for regularly varying stationary time series. The formula is most easily understood when the various one-component regular variation statements are tied up to a single multi-component statement. The theory of multi-component regular variation is worked out for general random vectors, not necessarily Markov trees, with an eye towards other models, graphical or otherwise.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.