Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Infinite stable looptrees (1902.01717v2)

Published 5 Feb 2019 in math.PR

Abstract: We give a construction of an infinite stable looptree, which we denote by $\mathcal{L}{\alpha}{\infty}$, and prove that it arises both as a local limit of the compact stable looptrees of Curien and Kortchemski (2015), and as a scaling limit of the infinite discrete looptrees of Richier (2017) and Bj\"ornberg and Stef\'ansson (2015). As a consequence, we are able to prove various convergence results for volumes of small balls in compact stable looptrees, explored more deeply in a companion paper. We also establish the spectral dimension of $\mathcal{L}{\alpha}{\infty}$, and show that it agrees with that of its discrete counterpart. Moreover, we show that Brownian motion on $\mathcal{L}_{\alpha}{\infty}$ arises as a scaling limit of random walks on discrete looptrees, and as a local limit of Brownian motion on compact stable looptrees, which has similar consequences for the limit of the heat kernel.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube