Brownian motion on stable looptrees (1902.01713v2)
Abstract: In this article, we introduce Brownian motion on stable looptrees using resistance techniques. We prove an invariance principle characterising it as the scaling limit of random walks on discrete looptrees, and prove precise local and global bounds on its heat kernel. We also conduct a detailed investigation of the volume growth properties of stable looptrees, and show that the random volume and heat kernel fluctuations are locally log-logarithmic, and globally logarithmic around leading terms of $r{\alpha}$ and $t{\frac{-\alpha}{\alpha + 1}}$ respectively. These volume fluctuations are the same order as for the Brownian continuum random tree, but the upper volume fluctuations (and corresponding lower heat kernel fluctuations) are different to those of stable trees.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.