Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Nonparametric Inference via Deep Neural Network (1902.01687v2)

Published 5 Feb 2019 in cs.LG and stat.ML

Abstract: Deep neural network is a state-of-art method in modern science and technology. Much statistical literature have been devoted to understanding its performance in nonparametric estimation, whereas the results are suboptimal due to a redundant logarithmic sacrifice. In this paper, we show that such log-factors are not necessary. We derive upper bounds for the $L2$ minimax risk in nonparametric estimation. Sufficient conditions on network architectures are provided such that the upper bounds become optimal (without log-sacrifice). Our proof relies on an explicitly constructed network estimator based on tensor product B-splines. We also derive asymptotic distributions for the constructed network and a relating hypothesis testing procedure. The testing procedure is further proven as minimax optimal under suitable network architectures.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.