Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A local contact systolic inequality in dimension three (1902.01249v2)

Published 4 Feb 2019 in math.SG and math.DG

Abstract: Let $\alpha$ be a contact form on a connected closed three-manifold $\Sigma$. The systolic ratio of $\alpha$ is defined as $\rho_{\mathrm{sys}}(\alpha):=\tfrac{1}{\mathrm{Vol}(\alpha)}T_{\min}(\alpha)2$, where $T_{\min}(\alpha)$ and $\mathrm{Vol}(\alpha)$ denote the minimal period of periodic Reeb orbits and the contact volume. The form $\alpha$ is said to be Zoll if its Reeb flow generates a free $S1$-action on $\Sigma$. We prove that the set of Zoll contact forms on $\Sigma$ locally maximises the systolic ratio in the $C3$-topology. More precisely, we show that every Zoll form $\alpha_$ admits a $C3$-neighbourhood $\mathcal U$ in the space of contact forms such that, for every $\alpha\in\mathcal U$, there holds $\rho_{\mathrm{sys}}(\alpha)\leq \rho_{\mathrm{sys}}(\alpha_)$ with equality if and only if $\alpha$ is Zoll.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.