Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Doubling Constructions and Tensor Product $L$-Functions: coverings of the symplectic group (1902.00880v2)

Published 3 Feb 2019 in math.NT and math.RT

Abstract: In this work we develop an integral representation for the partial $L$-function of a pair $\pi\times\tau$ of genuine irreducible cuspidal automorphic representations, $\pi$ of the $m$-fold covering of Matsumoto of the symplectic group $Sp_{2n}$, and $\tau$ of a certain covering group of $GL_k$, with arbitrary $m$, $n$ and $k$. Our construction is based on the recent extension by Cai, Friedberg, Ginzburg and the author, of the classical doubling method of Piatetski-Shapiro and Rallis, from rank-$1$ twists to arbitrary rank twists. We prove a basic global identity for the integral and compute the local integrals with unramified data. Possible applications include an analytic definition of local factors for representations of covering groups, and a Shimura type lift of representations from covering groups to general linear groups.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.