Papers
Topics
Authors
Recent
2000 character limit reached

Training Artificial Neural Networks by Generalized Likelihood Ratio Method: Exploring Brain-like Learning to Improve Robustness (1902.00358v2)

Published 31 Jan 2019 in cs.LG, cs.AI, and stat.ML

Abstract: In this work, we propose a generalized likelihood ratio method capable of training the artificial neural networks with some biological brain-like mechanisms,.e.g., (a) learning by the loss value, (b) learning via neurons with discontinuous activation and loss functions. The traditional back propagation method cannot train the artificial neural networks with aforementioned brain-like learning mechanisms. Numerical results show that the robustness of various artificial neural networks trained by the new method is significantly improved when the input data is affected by both the natural noises and adversarial attacks. Code is available: \url{https://github.com/LX-doctorAI/GLR_ADV} .

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.