Papers
Topics
Authors
Recent
2000 character limit reached

CURE: Curvature Regularization For Missing Data Recovery (1901.09548v3)

Published 28 Jan 2019 in cs.CV, cs.NA, and math.NA

Abstract: Missing data recovery is an important and yet challenging problem in imaging and data science. Successful models often adopt certain carefully chosen regularization. Recently, the low dimension manifold model (LDMM) was introduced by S.Osher et al. and shown effective in image inpainting. They observed that enforcing low dimensionality on image patch manifold serves as a good image regularizer. In this paper, we observe that having only the low dimension manifold regularization is not enough sometimes, and we need smoothness as well. For that, we introduce a new regularization by combining the low dimension manifold regularization with a higher order Curvature Regularization, and we call this new regularization CURE for short. The key step of solving CURE is to solve a biharmonic equation on a manifold. We further introduce a weighted version of CURE, called WeCURE, in a similar manner as the weighted nonlocal Laplacian (WNLL) method. Numerical experiments for image inpainting and semi-supervised learning show that the proposed CURE and WeCURE significantly outperform LDMM and WNLL respectively.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.