Papers
Topics
Authors
Recent
Search
2000 character limit reached

Off-Policy Deep Reinforcement Learning by Bootstrapping the Covariate Shift

Published 27 Jan 2019 in cs.LG and stat.ML | (1901.09455v1)

Abstract: In this paper we revisit the method of off-policy corrections for reinforcement learning (COP-TD) pioneered by Hallak et al. (2017). Under this method, online updates to the value function are reweighted to avoid divergence issues typical of off-policy learning. While Hallak et al.'s solution is appealing, it cannot easily be transferred to nonlinear function approximation. First, it requires a projection step onto the probability simplex; second, even though the operator describing the expected behavior of the off-policy learning algorithm is convergent, it is not known to be a contraction mapping, and hence, may be more unstable in practice. We address these two issues by introducing a discount factor into COP-TD. We analyze the behavior of discounted COP-TD and find it better behaved from a theoretical perspective. We also propose an alternative soft normalization penalty that can be minimized online and obviates the need for an explicit projection step. We complement our analysis with an empirical evaluation of the two techniques in an off-policy setting on the game Pong from the Atari domain where we find discounted COP-TD to be better behaved in practice than the soft normalization penalty. Finally, we perform a more extensive evaluation of discounted COP-TD in 5 games of the Atari domain, where we find performance gains for our approach.

Citations (96)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.