Papers
Topics
Authors
Recent
2000 character limit reached

Comparing of Term Clustering Frameworks for Modular Ontology Learning (1901.09037v1)

Published 25 Jan 2019 in cs.IR and cs.CL

Abstract: This paper aims to use term clustering to build a modular ontology according to core ontology from domain-specific text. The acquisition of semantic knowledge focuses on noun phrase appearing with the same syntactic roles in relation to a verb or its preposition combination in a sentence. The construction of this co-occurrence matrix from context helps to build feature space of noun phrases, which is then transformed to several encoding representations including feature selection and dimensionality reduction. In addition, the content has also been presented with the construction of word vectors. These representations are clustered respectively with K-Means and Affinity Propagation (AP) methods, which differentiate into the term clustering frameworks. Due to the randomness of K-Means, iteration efforts are adopted to find the optimal parameter. The frameworks are evaluated extensively where AP shows dominant effectiveness for co-occurred terms and NMF encoding technique is salient by its promising facilities in feature compression.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.