Papers
Topics
Authors
Recent
Search
2000 character limit reached

Chebyshev Center of the Intersection of Balls: Complexity, Relaxation and Approximation

Published 22 Jan 2019 in math.OC | (1901.07645v1)

Abstract: We study the n-dimensional problem of finding the smallest ball enclosing the intersection of p given balls, the so-called Chebyshev center problem (CCB). It is a minimax optimization problem and the inner maximization is a uniform quadratic optimization problem (UQ). When p<=n, (UQ) is known to enjoy a strong duality and consequently (CCB) is solved via a standard convex quadratic programming (SQP). In this paper, we first prove that (CCB) is NP-hard and the special case when n = 2 is strongly polynomially solved. With the help of a newly introduced linear programming relaxation (LP), the (SQP) relaxation is reobtained more directly and the first approximation bound for the solution obtained by (SQP) is established for the hard case p>n. Finally, also based on (LP), we show that (CCB) is polynomially solved when either n or p-n(> 0) is fixed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.