Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

CAE-ADMM: Implicit Bitrate Optimization via ADMM-based Pruning in Compressive Autoencoders (1901.07196v4)

Published 22 Jan 2019 in cs.CV and cs.LG

Abstract: We introduce ADMM-pruned Compressive AutoEncoder (CAE-ADMM) that uses Alternative Direction Method of Multipliers (ADMM) to optimize the trade-off between distortion and efficiency of lossy image compression. Specifically, ADMM in our method is to promote sparsity to implicitly optimize the bitrate, different from entropy estimators used in the previous research. The experiments on public datasets show that our method outperforms the original CAE and some traditional codecs in terms of SSIM/MS-SSIM metrics, at reasonable inference speed.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.