Papers
Topics
Authors
Recent
2000 character limit reached

Local and Global Perspectives on Diffusion Maps in the Analysis of Molecular Systems (1901.06936v2)

Published 21 Jan 2019 in physics.data-an, cond-mat.stat-mech, and physics.comp-ph

Abstract: Diffusion maps approximate the generator of Langevin dynamics from simulation data. They afford a means of identifying the slowly-evolving principal modes of high-dimensional molecular systems. When combined with a biasing mechanism, diffusion maps can accelerate the sampling of the stationary Boltzmann-Gibbs distribution. In this work, we contrast the local and global perspectives on diffusion maps, based on whether or not the data distribution has been fully explored. In the global setting, we use diffusion maps to identify metastable sets and to approximate the corresponding committor functions of transitions between them. We also discuss the use of diffusion maps within the metastable sets, formalising the locality via the concept of the quasi-stationary distribution and justifying the convergence of diffusion maps within a local equilibrium. This perspective allows us to propose an enhanced sampling algorithm. We demonstrate the practical relevance of these approaches both for simple models and for molecular dynamics problems (alanine dipeptide and deca-alanine).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.