Papers
Topics
Authors
Recent
2000 character limit reached

Accelerated scale bridging with sparsely approximated Gaussian learning (1901.06777v1)

Published 21 Jan 2019 in physics.comp-ph

Abstract: Multiscale modeling is a systematic approach to describe the behavior of complex systems by coupling models from different scales. The approach has been demonstrated to be very effective in areas of science as diverse as materials science, climate modeling and chemistry. However, routine use of multiscale simulations is often hindered by the very high cost of individual at-scale models. Approaches aiming to alleviate that cost by means of Gaussian process regression based surrogate models have been proposed. Yet, many of these surrogate models are expensive to construct, especially when the number of data needed is large. In this article, we employ a hierarchical sparse Cholesky decomposition to develop a sparse Gaussian process regression method and apply the method to approximate the equation of state of an energetic material in a multiscale model of dynamic deformation. We demonstrate that the method provides a substantial reduction both in computational cost and solution error as compared with previous methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.