Competing Universalities in Kardar-Parisi-Zhang (KPZ) Growth Models (1901.05716v1)
Abstract: We report on the universality of height fluctuations at the crossing point of two interacting (1+1)-dimensional Kardar-Parisi-Zhang (KPZ) interfaces with curved and flat initial conditions. We introduce a control parameter p as the probability for the initially flat geometry to be chosen and compute the phase diagram as a function of p. We find that the distribution of the fluctuations converges to the Gaussian orthogonal ensemble Tracy-Widom (TW) distribution for p<0.5, and to the Gaussian unitary ensemble TW distribution for p>0.5. For p=0.5 where the two geometries are equally weighted, the behavior is governed by an emergent Gaussian statistics in the universality class of Brownian motion. We propose a phenomenological theory to explain our findings and discuss possible applications in nonequilibrium transport and traffic flow.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.