Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Joint Spatial and Layer Attention for Convolutional Networks (1901.05376v2)

Published 16 Jan 2019 in cs.CV

Abstract: In this paper, we propose a novel approach that learns to sequentially attend to different Convolutional Neural Networks (CNN) layers (i.e., what'' feature abstraction to attend to) and different spatial locations of the selected feature map (i.e.,where'') to perform the task at hand. Specifically, at each Recurrent Neural Network (RNN) step, both a CNN layer and localized spatial region within it are selected for further processing. We demonstrate the effectiveness of this approach on two computer vision tasks: (i) image-based six degree of freedom camera pose regression and (ii) indoor scene classification. Empirically, we show that combining the what'' andwhere'' aspects of attention improves network performance on both tasks. We evaluate our method on standard benchmarks for camera localization (Cambridge, 7-Scenes, and TUM-LSI) and for scene classification (MIT-67 Indoor Scenes). For camera localization our approach reduces the median error by 18.8\% for position and 8.2\% for orientation (averaged over all scenes), and for scene classification it improves the mean accuracy by 3.4\% over previous methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.