Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Goal-Oriented Adaptive Discrete Empirical Interpolation Method (1901.05343v1)

Published 10 Jan 2019 in math.NA and cs.NA

Abstract: In this study we propose a-posteriori error estimation results to approximate the precision loss in quantities of interests computed using reduced order models. To generate the surrogate models we employ Proper Orthogonal Decomposition and Discrete Empirical Interpolation Method. First order expansions of the components of the quantity of interest obtained as the product between the components gradient and model residuals are summed up to generate the error estimation result. Efficient versions are derived for explicit and implicit Euler schemes and require only one reduced forward and adjoint models and high-fidelity model residuals estimation. Then we derive an adaptive DEIM algorithm to enhance the accuracy of these quantities of interests. The adaptive DEIM algorithm uses dual weighted residuals singular vectors in combination with the non-linear term basis. Both the a-posteriori error estimation results and the adaptive DEIM algorithm were assessed using the 1D-Burgers and Shallow Water Equation models and the numerical experiments shows very good agreement with the theoretical results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube