Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A note on the structure of prescribed gradient--like domains of non--integrable vector fields (1901.04829v1)

Published 15 Jan 2019 in math.CA, math-ph, and math.MP

Abstract: Given a geometric structure on $\mathbb{R}{n}$ with $n$ even (e.g. Euclidean, symplectic, Minkowski, pseudo-Euclidean), we analyze the set of points inside the domain of definition of an arbitrary given $\mathcal{C}1$ vector field, where the value of the vector field equals the value of the left/right gradient--like vector field of some fixed $\mathcal{C}2$ potential function, although a non-integrability condition holds at each such a point. Particular examples of gradient--like vector fields include the class of gradient vector fields with respect to Euclidean or pseudo-Euclidean inner products, and the class of Hamiltonian vector fields associated to symplectic structures on $\mathbb{R}{n}$ (with $n$ even). The main result of this article provides a geometric version of the main result of [1].

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube